SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT

This report may contain confidential information about IT systems and the intellectual property of the Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this report shall be without mandatory consent.

Document

Name	Smart Contract Code Review and Security Analysis Report for QRBP token
Approved By	Svyatoslav Nadozirny Solidity SC Auditor
Туре	Dapp
Platform	EVM
Language	Solidity
Methodology	Link
ChangeLog	10 July, 2023

$\overline{}$	DDD	CIAA	\Box T	\sim	JTD A	CT	ALIDIT
u	KBF		KKI	COI	N I R F	1 61/	AUDIT

Table of contents

Document	1
Introduction	3
Scope	3
Severity Definitions	3
Executive Summary	3
Documentation quality	3
Code quality	4
Security score	4
Summary	4
Risks	4
System Overview	4
Privileged roles	4
Recommendations	4
Checked Items	5
Findings	7
Critical	7
High	7
Medium	7
Low	7
Disclaimers	8
Technical Disclaimer	8

Introduction

(Consultant) was contracted by (Customer) to conduct a Smart Contract Code Review and Security Analysis. This report presents the findings of the security assessment of the Customer's smart contracts

Scope

The scope of the project includes the following smart contracts from the file:

https://drive.google.com/file/d/19plhaEX-uji466PsYltfewWuXBBuzZUf/view

https://etherscan.io/token/0xc46e508d3cc36a3934968857b7a51ef6ec51b8cc

SHA256 Hash:

8608941c2ec6130662aaac5286e4ac4df281bce65e2b17778d024ecde88e0861 QRBP.zip

Severity Definitions

Risk Level	Description
Critical	Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or contract state manipulation by external or internal actors.
High	High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more limited scope, but can still lead to the loss of user funds or contract state manipulation by external or internal actors.
Medium	Medium vulnerabilities are usually limited to state manipulations but cannot lead to asset loss. Major deviations from best practices are also in this category.
Low	Low vulnerabilities are related to outdated and unused code or minor Gas optimization. These issues won't have a significant impact on code execution but affect code quality.

Executive Summary

The score measurement details can be found in the corresponding section of the scoring methodology.

Documentation quality

The total Documentation Quality score is 8 out of 10.

 Functional requirements are provided in https://docs.google.com/presentation/d/1pn0vFYRZQLesHKO_2jlyfXwnCAhkl7i7W L49HOi7dt0/edit#slide=id.g2580722fdf9_0_81 (5 of 5).

- Technical description is not provided (0 of 1).
- Development environment is not described (0 of 1).
- NatSpec is provided (3 of 3).

Code quality

The total Code Quality score is 5 out of 10.

- The development environment is not provided (0 of 5).
- Solidity style guide violations (5 of 5).

Security score

As a result of the audit, the code does not contains severity issues. The security score is 10 out of 10.

Summary

According to the assessment, the Customer's smart contract has the following score: 8.8.

The system users should acknowledge all the risks summed up in the risks section of the report.

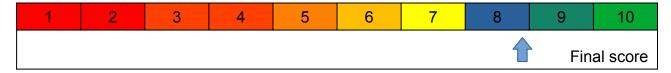


Table. The distribution of issues during the audit

Review date	Low	Medium	High	Critical
10 July, 2023	0	0	0	0

Risks

There are not risks found.

System Overview

Smart contract for the QRBP token based on the ERC20 standard with an initial emission of 269,047,619 QRBP provides the basic functionality expected from an ERC20 token. It allows for token transfers, balance inquiries, approval-based transfers, event logging. These features facilitate the smooth operation and management of the QRBP token within the Ethereum ecosystem.

Privileged roles

There are no privileged roles.

Recommendations

Provide test environment and tests.

Checked Items

We have audited the Customers' smart contracts for commonly known and specific vulnerabilities. Here are some items considered:

Item	Туре	Description	Status
Default Visibility	SWC-100 SWC-108	Functions and state variables visibility should be set explicitly. Visibility levels should be specified consciously.	Passed
Integer Overflow and Underflow	SWC-101	If unchecked math is used, all math operations should be safe from overflows and underflows.	Not relevant
Outdated Compiler Version	SWC-102	It is recommended to use a recent version of the Solidity compiler.	Passed
Floating Pragma	SWC-103	Contracts should be deployed with the same compiler version and flags that they have been tested thoroughly.	Passed
Unchecked Call Return Value	SWC-104	The return value of a message call should be checked.	Passed
Access Control & Authorization	CWE-284	Ownership takeover should not be possible. All crucial functions should be protected. Users could not affect data that belongs to other users.	Passed
SELFDESTRUCT Instruction	SWC-106	The contract should not be self-destructible while it has funds belonging to users.	Not Relevant
Check-Effect- Interaction	SWC-107	Check-Effect-Interaction pattern should be followed if the code performs ANY external call.	Passed
Assert Violation	SWC-110	Properly functioning code should never reach a failing assert statement.	Passed
Deprecated Solidity Functions	SWC-111	Deprecated built-in functions should never be used.	Passed
Delegatecall to Untrusted Callee	SWC-112	Delegatecalls should only be allowed to trusted addresses.	Not Relevant

DoS (Denial of Service)	SWC-113 SWC-128	Execution of the code should never be blocked by a specific contract state unless it is required.	Passed
Race Conditions	SWC-114	Race Conditions and Transactions Order Dependency should not be possible.	Passed
Authorization through tx.origin	SWC-115	tx.origin should not be used for authorization.	Passed
Block values as a proxy for time	SWC-116	Block numbers should not be used for time calculations.	Passed
Signature Unique	SWC-117 SWC-121 SWC-122 EIP-155	Signed messages should always have a unique id. A transaction hash should not be used as a unique id. Chain identifier should always be used.	Not Relevant
Shadowing State Variable	SWC-119	State variables should not be shadowed.	Passed
Weak Sources of Randomness	SWC-120	Random values should never be generated from Chain Attributes or be predictable.	Not Relevant
Incorrect Inheritance Order	SWC-125	When inheriting multiple contracts, especially if they have identical functions, a developer should carefully specify inheritance in the correct order.	Passed
Calls Only to Trusted Addresses	<u>-2</u> SWC-126	All external calls should be performed only to trusted addresses.	Passed
Presence of unused variables	SWC-131	The code should not contain unused variables if this is not justified by design.	Passed
EIP standards violation	EIP	EIP standards should not be violated.	Passed
Assets integrity	Custom	Funds are protected and cannot be withdrawn without proper permissions or be locked on the contract.	Passed
User Balances manipulation	Custom	Contract owners or any other third party should not be able to access funds belonging to users.	Passed
Data Consistency	Custom	Smart contract data should be consistent all	Passed
<u> </u>			

		over the data flow.	
Flashloan Attack	Custom	When working with exchange rates, they should be received from a trusted source and not be vulnerable to short-term rate changes that can be achieved by using flash loans. Oracles should be used.	Not Relevant
Token Supply manipulation	Custom	Tokens can be minted only according to rules specified in a whitepaper or any other documentation provided by the customer.	Not Relevant
Gas Limit and Loops	Custom	Transaction execution costs should not depend dramatically on the amount of data stored on the contract. There should not be any cases when execution fails due to the block gas limit.	Not Relevant
Style guide violation	Custom	Style guides and best practices should be followed.	Passed
Requirements Compliance	Custom	The code should be compliant with the requirements provided by the Customer.	Passed
Environment Consistency	Custom	The project should contain a configured development environment with a comprehensive description of how to compile, build and deploy the code.	Not Relevant
Secure Oracles Usage	Custom	The code should have the ability to pause specific data feeds that it relies on. This should be done to protect a contract from compromised oracles.	Not Relevant
Tests Coverage	Custom	The code should be covered with unit tests. Test coverage should be 100%, with both negative and positive cases covered. Usage of contracts by multiple users should be tested.	Not Relevant
Stable Imports	Custom	The code should not reference draft contracts, that may be changed in the future.	Not Relevant

Findings

Critical

No issues

High

No issues

Medium

No issues

Low

No issues

Disclaimers

The smart contracts given for audit have been analyzed based on best industry practices at the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the code. The report covers the code submitted and reviewed, so it may not be relevant after any modifications.

Do not consider this report as a final and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.