
 SMART CONTRACT CODE REVIEW
 AND SECURITY ANALYSIS REPORT

 QRBP SMART CONTRACT AUDIT 1

 This report may contain confidential information about IT systems and the
 intellectual property of the Customer, as well as information about potential
 vulnerabilities and methods of their exploitation.
 The report can be disclosed publicly after prior consent by another Party. Any
 subsequent publication of this report shall be without mandatory consent.

 Document
 Name Smart Contract Code Review and Security Analysis Report for QRBP

 token

 Approved By Svyatoslav Nadozirny | Solidity SC Auditor

 Type Dapp

 Platform EVM

 Language Solidity

 Methodology Link

 ChangeLog 10 July, 2023

https://docs.google.com/document/d/1ndVapYEp98xg7awEew90bI05Y56VgicWbzxI-mQulJI

 QRBP SMART CONTRACT AUDIT 2

 Table of contents
 Document 1
 Introduction 3
 Scope 3
 Severity Definitions 3
 Executive Summary 3

 Documentation quality 3
 Code quality 4
 Security score 4
 Summary 4

 Risks 4
 System Overview 4

 Privileged roles 4
 Recommendations 4

 Checked Items 5
 Findings 7

 Critical 7
 High 7
 Medium 7
 Low 7

 Disclaimers 8
 Technical Disclaimer 8

 QRBP SMART CONTRACT AUDIT 3

 Introduction
 (Consultant) was contracted by (Customer) to conduct a Smart Contract Code Review and
 Security Analysis. This report presents the findings of the security assessment of the
 Customer's smart contracts.

 Scope
 The scope of the project includes the following smart contracts from the file:

 https://drive.google.com/file/d/19plhaEX-uji466PsYItfewWuXBBuzZUf/view

 https://etherscan.io/token/0xc46e508d3cc36a3934968857b7a51ef6ec51b8cc

 SHA256 Hash:

 8608941c2ec6130662aaac5286e4ac4df281bce65e2b17778d024ecde88e0861 QRBP.zip

 Severity Definitions
 Risk Level Description

 Critical
 Critical vulnerabilities are usually straightforward to exploit and can
 lead to the loss of user funds or contract state manipulation by external
 or internal actors.

 High

 High vulnerabilities are usually harder to exploit, requiring specific
 conditions, or have a more limited scope, but can still lead to the loss
 of user funds or contract state manipulation by external or internal
 actors.

 Medium
 Medium vulnerabilities are usually limited to state manipulations but
 cannot lead to asset loss. Major deviations from best practices are also
 in this category.

 Low
 Low vulnerabilities are related to outdated and unused code or minor
 Gas optimization. These issues won't have a significant impact on
 code execution but affect code quality.

 Executive Summary
 The score measurement details can be found in the corresponding section of the scoring
 methodology .

 Documentation quality
 The total Documentation Quality score is 8 out of 10.

 ● Functional requirements are provided in
 https://docs.google.com/presentation/d/1pn0vFYRZQLesHKO_2jIyfXwnCAhkI7i7W
 L49HOi7dt0/edit#slide=id.g2580722fdf9_0_81 (5 of 5).

https://docs.google.com/document/d/1ndVapYEp98xg7awEew90bI05Y56VgicWbzxI-mQulJI/edit
https://docs.google.com/document/d/1ndVapYEp98xg7awEew90bI05Y56VgicWbzxI-mQulJI/edit

 QRBP SMART CONTRACT AUDIT 4

 ● Technical description is not provided (0 of 1).

 ● Development environment is not described (0 of 1).

 ● NatSpec is provided (3 of 3).

 Code quality
 The total Code Quality score is 5 out of 10.

 ● The development environment is not provided (0 of 5).

 ● Solidity style guide violations (5 of 5).

 Security score
 As a result of the audit, the code does not contains severity issues. The security score is
 10 out of 10.

 Summary
 According to the assessment, the Customer's smart contract has the following score: 8.8 .
 The system users should acknowledge all the risks summed up in the risks section of the
 report.

 1 2 3 4 5 6 7 8 9 10

 Final score

 Table. The distribution of issues during the audit

 Review date Low Medium High Critical
 10 July, 2023 0 0 0 0

 Risks
 There are not risks found.

 System Overview
 Smart contract for the QRBP token based on the ERC20 standard with an initial emission
 of 269,047,619 QRBP provides the basic functionality expected from an ERC20 token. It
 allows for token transfers, balance inquiries, approval-based transfers, event logging.
 These features facilitate the smooth operation and management of the QRBP token within
 the Ethereum ecosystem.

 Privileged roles
 There are no privileged roles.

 QRBP SMART CONTRACT AUDIT 5

 Recommendations
 Provide test environment and tests.

 Checked Items
 We have audited the Customers' smart contracts for commonly known and specific
 vulnerabilities. Here are some items considered:

 Item Type Description Status

 Default Visibility SWC-100
 SWC-108

 Functions and state variables visibility
 should be set explicitly. Visibility levels
 should be specified consciously.

 Passed

 Integer Overflow
 and Underflow SWC-101

 If unchecked math is used, all math
 operations should be safe from overflows
 and underflows.

 Not relevant

 Outdated Compiler
 Version SWC-102 It is recommended to use a recent version of

 the Solidity compiler.
 Passed

 Floating Pragma SWC-103
 Contracts should be deployed with the same
 compiler version and flags that they have
 been tested thoroughly.

 Passed

 Unchecked Call
 Return Value SWC-104 The return value of a message call should

 be checked.
 Passed

 Access Control &
 Authorization CWE-284

 Ownership takeover should not be possible.
 All crucial functions should be protected.
 Users could not affect data that belongs to
 other users.

 Passed

 SELFDESTRUCT
 Instruction SWC-106 The contract should not be self-destructible

 while it has funds belonging to users.
 Not
 Relevant

 Check-Effect-
 Interaction SWC-107

 Check-Effect-Interaction pattern should be
 followed if the code performs ANY external
 call.

 Passed

 Assert Violation SWC-110 Properly functioning code should never
 reach a failing assert statement.

 Passed

 Deprecated
 Solidity Functions SWC-111 Deprecated built-in functions should never

 be used.
 Passed

 Delegatecall to
 Untrusted Callee SWC-112 Delegatecalls should only be allowed to

 trusted addresses.
 Not
 Relevant

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112

 QRBP SMART CONTRACT AUDIT 6

 DoS (Denial of
 Service)

 SWC-113
 SWC-128

 Execution of the code should never be
 blocked by a specific contract state unless it
 is required.

 Passed

 Race Conditions SWC-114 Race Conditions and Transactions Order
 Dependency should not be possible.

 Passed

 Authorization
 through tx.origin SWC-115 tx.origin should not be used for

 authorization.
 Passed

 Block values as a
 proxy for time SWC-116 Block numbers should not be used for time

 calculations.
 Passed

 Signature Unique
 Id

 SWC-117
 SWC-121
 SWC-122
 EIP-155

 Signed messages should always have a
 unique id. A transaction hash should not be
 used as a unique id. Chain identifier should
 always be used.

 Not
 Relevant

 Shadowing State
 Variable SWC-119 State variables should not be shadowed. Passed

 Weak Sources of
 Randomness SWC-120 Random values should never be generated

 from Chain Attributes or be predictable.
 Not
 Relevant

 Incorrect
 Inheritance Order SWC-125

 When inheriting multiple contracts,
 especially if they have identical functions, a
 developer should carefully specify
 inheritance in the correct order.

 Passed

 Calls Only to
 Trusted Addresses

 EEA-Level
 -2

 SWC-126

 All external calls should be performed only to
 trusted addresses.

 Passed

 Presence of
 unused variables SWC-131

 The code should not contain unused
 variables if this is not justified by design.

 Passed

 EIP standards
 violation EIP EIP standards should not be violated. Passed

 Assets integrity Custom
 Funds are protected and cannot be
 withdrawn without proper permissions or be
 locked on the contract.

 Passed

 User Balances
 manipulation Custom

 Contract owners or any other third party
 should not be able to access funds
 belonging to users.

 Passed

 Data Consistency Custom Smart contract data should be consistent all Passed

https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

 QRBP SMART CONTRACT AUDIT 7

 over the data flow.

 Flashloan Attack Custom

 When working with exchange rates, they
 should be received from a trusted source
 and not be vulnerable to short-term rate
 changes that can be achieved by using flash
 loans. Oracles should be used.

 Not
 Relevant

 Token Supply
 manipulation Custom

 Tokens can be minted only according to
 rules specified in a whitepaper or any other
 documentation provided by the customer.

 Not
 Relevant

 Gas Limit and
 Loops Custom

 Transaction execution costs should not
 depend dramatically on the amount of data
 stored on the contract. There should not be
 any cases when execution fails due to the
 block gas limit.

 Not
 Relevant

 Style guide
 violation Custom Style guides and best practices should be

 followed.
 Passed

 Requirements
 Compliance Custom The code should be compliant with the

 requirements provided by the Customer.
 Passed

 Environment
 Consistency Custom

 The project should contain a configured
 development environment with a
 comprehensive description of how to
 compile, build and deploy the code.

 Not
 Relevant

 Secure Oracles
 Usage Custom

 The code should have the ability to pause
 specific data feeds that it relies on. This
 should be done to protect a contract from
 compromised oracles.

 Not
 Relevant

 Tests Coverage Custom

 The code should be covered with unit tests.
 Test coverage should be 100%, with both
 negative and positive cases covered. Usage
 of contracts by multiple users should be
 tested.

 Not
 Relevant

 Stable Imports Custom The code should not reference draft
 contracts, that may be changed in the future.

 Not
 Relevant

 QRBP SMART CONTRACT AUDIT 8

 Findings
 Critical
 No issues

 High
 No issues

 Medium
 No issues

 Low
 No issues

 QRBP SMART CONTRACT AUDIT 9

 Disclaimers
 The smart contracts given for audit have been analyzed based on best industry practices
 at the time of the writing of this report, with cybersecurity vulnerabilities and issues in
 smart contract source code, the details of which are disclosed in this report (Source Code);
 the Source Code compilation, deployment, and functionality (performing the intended
 functions).

 The report contains no statements or warranties on the identification of all vulnerabilities
 and security of the code. The report covers the code submitted and reviewed, so it may
 not be relevant after any modifications.

 Do not consider this report as a final and sufficient assessment regarding the utility and
 safety of the code, bug-free status, or any other contract statements.

 While we have done our best in conducting the analysis and producing this report, it is
 important to note that you should not rely on this report only — we recommend proceeding
 with several independent audits and a public bug bounty program to ensure the security of
 smart contracts.

 English is the original language of the report. The Consultant is not responsible for the
 correctness of the translated versions.

 Technical Disclaimer
 Smart contracts are deployed and executed on a blockchain platform. The platform, its
 programming language, and other software related to the smart contract can have
 vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit
 security of the audited smart contracts.

